Annual Drinking Water Quality Report

GOREVILLE

IL0870200

Annual Water Quality Report for the period of January 1 to December 31, 2023

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

The source of drinking water used by GOREVILLE is Purchased Surface Water

For more information regarding this report contact:

Name	Sam Mighell	
Phone	618-995-2157	

Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien.

Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population.

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

The Village of Goreville board meetings are held the first Monday each month.

The Village of Goreville water is purchased from the Lake of Egypt.

Lead and Copper

Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of

The concentration of a contaminant which if exceeded triggers treatment or other requirements which a water system must follow

Action Level: The co	ncentration of	a Contaminant	willcil, II exceed	ieu, triggers	treatment or	other requir	ements which a	water system must rorrow.
Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2023	1.3	1.3	0.053	0	ppm		Erosion of natural deposits; Leaching f wood preservatives; Corrosion of househ plumbing systems.

Water Quality Test Results

Definitions: The following tables contain scientific terms and measures, some of which may require explanation.

Regulatory compliance with some MCLs are based on running annual average of monthly samples. Ava:

A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why Level 1 Assessment:

total coliform bacteria have been found in our water system.

A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if Level 2 Assessment:

possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water

system on multiple occasions.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible

using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow

for a margin of safety.

Maximum residual disinfectant level or The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a MRDL:

disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not

reflect the benefits of the use of disinfectants to control microbial contaminants. goal or MRDLG:

not applicable. na:

mrem: millirems per year (a measure of radiation absorbed by the body)

micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water. : dag

milligrams per liter or parts per million - or one ounce in 7,350 gallons of water. ppm:

A required process intended to reduce the level of a contaminant in drinking water. Treatment Technique or TT:

Regulated Contaminants

Regulated Contamin	AIICS							
Disinfectants and Disinfection By- Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chloramines	2023	3.1	3 - 3.6	MRDLG = 4	MRDL = 4	ppm	N	Water additive used to control microbes.
Chlorite	2023	0.68	0.49 - 0.68	0.8	1	ppm	N	By-product of drinking water disinfection.
Haloacetic Acids (HAA5)	2023	32	22.5 - 46.8	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2023	43	18.9 - 73.5	No goal for the total	80	ppb	N	By-product of drinking water disinfection.
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	2023	0.0251	0.0251 - 0.0251	. 2	2	ppm	N	Discharge of drilling wastes; Discharge fr metal refineries; Erosion of natural depos
Fluoride	2023	0.7	0.73 - 0.73	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge frofertilizer and aluminum factories.
Sodium	2023	23	23200 - 23200			ppb	N	Erosion from naturally occuring deposits. Used in water softener regeneration.
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined Radium 226/228	07/20/2020	1.03	1.03 - 1.03	0	5	pCi/L	N	Erosion of natural deposits.
Gross alpha excluding radon and uranium	07/20/2020	1.7	1.7 - 1.7	0	15	pCi/L	N	Erosion of natural deposits.

Turbidity

	Limit (Treatment Technique)	Level Detected	Violation	Likely Source of Contamination
Highest single measurement	1 NTU	0.385 NTU	И	Soil runoff.

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

95PT

Lowest monthly % meeting limit	0.3 NTU	97%	N	Soil runoff.

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violations section.

Source Water Assessment

We want our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly scheduled meetings. The source water assessment for our supply has been completed by the Illinois EPA. If you would like a copy of this information, please stop by City Hall or call our water operator at 618-995-2157. To view a summary version of the completed Source Water Assessments, including: Importance of Source Water; Susceptibility to Contamination Determination; and documentation/recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl.

Source of Water: LAKE OF EGYPT PWDIIlinois EPA considers all surface water sources of public water supply to susceptible to potential pollution problems. Hence the reason for mandatory treatment of all public water supplies in Illinois. Mandatory treatment includes coagulation, sedimentation, filtration and disinfection. Primary sources of pollution in Illinois lakes can include agricultural runoff, land disposal (septic systems) and shoreline erosion.

Source Water Information

Source Water Name	Type of Water	Report Status	Location
LAKE OF EGYPT	SW	A	Lake Egypt Intake

Source Water Information

Source Water Name

Type of Water

Report Status Location

CC01 - GOREVILLE MASTER METER

FF IL1995200 TP03 LAKE OF

SW

Intersection of Old Marion Road and Gibson Street.

Regulated Contaminants Detected 2023

Coliform Bacteria

						A REPORT OF THE PERSON NAMED IN THE PERSON NAM	September 19 and
r	Maximum	Total Coliform	Highest No. of	Fecal Coliform or E.			Likely Source of Contamination
10	Contaminant Level	Maximum	Positive	Coli Maximum	Positive E. Coli or		
-	Goal	Contaminant		Contaminant Level	Fecal Coliform		
1		Level	_		Samples		
1	0	1 positive	1		0	N	Naturally present in the environment.
1		monthly sample.					
-							

Lead and Copper

Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level: The co	ncentration of	a contaminant	which, if exceed	dea, triggers	treatment or c	orner reduir	Singing without to	
Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	08/12/2021	1.3	1.3	0.042	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	08/12/2021	0	15	2.3	0	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.
			1			1		A STATE OF THE PROPERTY OF THE

Water Quality Test Results

Definitions:

The following tables contain scientific terms and measures, some of which may require explanation.

Avq:

Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: Level 2 Assessment:

A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water

system on multiple occasions.

Maximum Contaminant Level or MCL:

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow

Water Quality Test Results

MRDL:

Maximum residual disinfectant level or The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG:

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

not applicable.

mrem:

millirems per year (a measure of radiation absorbed by the body)

ppb:

Treatment Technique or TT:

micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

:mqq

na:

milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

A required process intended to reduce the level of a contaminant in drinking water.

Regulated Contaminants

Disinfectants and Disinfection By- Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chloramines	2023	3	2.2 - 3.4	MRDLG = 4	MRDL = 4	ppm	N	Water additive used to control microbes.
Haloacetic Acids (HAA5)	2023	35	30.2 - 38.1	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2023	34	16 - 59.2	No goal for the total	80	ppb	N	By-product of drinking water disinfection.

Violations Table

Consumer Confidence Rule

The Consumer Confidence Rule requires community water systems to prepare and provide to their customers annual consumer confidence reports on the quality of the water delivered by the systems.

Violation Type	Violation Begin	Violation End	Violation Explanation
CCR REPORT	07/01/2023		We failed to provide to you, our drinking water customers, an annual report that informs you about the quality of our drinking water and characterizes the risks from exposure to contaminants detected in our drinking water.